import java.io.FileReader; import java.io.InputStreamReader; import java.io.BufferedReader; import java.io.IOException; import java.util.StringTokenizer; import weiss.util.Iterator; import weiss.util.Collection; import weiss.util.List; import weiss.util.Queue; import weiss.util.Map; import weiss.util.LinkedList; import weiss.util.HashMap; import weiss.util.NoSuchElementException; import weiss.util.PriorityQueue; import weiss.nonstandard.PairingHeap; // Used to signal violations of preconditions for // various shortest path algorithms. class GraphException extends RuntimeException { public GraphException( String name ) { super( name ); } } // Represents an edge in the graph. class Edge { public Vertex dest; // Second vertex in Edge public double cost; // Edge cost public Edge( Vertex d, double c ) { dest = d; cost = c; } } // Represents an entry in the priority queue for Dijkstra's algorithm. class Path implements Comparable<Path> { public Vertex dest; // w public double cost; // d(w) public Path( Vertex d, double c ) { dest = d; cost = c; } public int compareTo( Path rhs ) { double otherCost = rhs.cost; return cost < otherCost ? -1 : cost > otherCost ? 1 : 0; } } // Represents a vertex in the graph. class Vertex { public String name; // Vertex name public List<Edge> adj; // Adjacent vertices public double dist; // Cost public Vertex prev; // Previous vertex on shortest path public int scratch;// Extra variable used in algorithm public Vertex( String nm ) { name = nm; adj = new LinkedList<Edge>( ); reset( ); } public void reset( ) { dist = Graph.INFINITY; prev = null; pos = null; scratch = 0; } public PairingHeap.Position<Path> pos; // Used for dijkstra2 (Chapter 23) } // Graph class: evaluate shortest paths. // // CONSTRUCTION: with no parameters. // // ******************PUBLIC OPERATIONS********************** // void addEdge( String v, String w, double cvw ) // --> Add additional edge // void printPath( String w ) --> Print path after alg is run // void unweighted( String s ) --> Single-source unweighted // void dijkstra( String s ) --> Single-source weighted // void negative( String s ) --> Single-source negative weighted // void acyclic( String s ) --> Single-source acyclic // ******************ERRORS********************************* // Some error checking is performed to make sure graph is ok, // and to make sure graph satisfies properties needed by each // algorithm. Exceptions are thrown if errors are detected. public class Graph { public static final double INFINITY = Double.MAX_VALUE; private Map<String,Vertex> vertexMap = new HashMap<String,Vertex>( ); /** * Add a new edge to the graph. */ public void addEdge( String sourceName, String destName, double cost ) { Vertex v = getVertex( sourceName ); Vertex w = getVertex( destName ); v.adj.add( new Edge( w, cost ) ); } /** * Driver routine to handle unreachables and print total cost. * It calls recursive routine to print shortest path to * destNode after a shortest path algorithm has run. */ public void printPath( String destName ) { Vertex w = vertexMap.get( destName ); if( w == null ) throw new NoSuchElementException( "Destination vertex not found" ); else if( w.dist == INFINITY ) System.out.println( destName + " is unreachable" ); else { System.out.print( "(Cost is: " + w.dist + ") " ); printPath( w ); System.out.println( ); } } /** * If vertexName is not present, add it to vertexMap. * In either case, return the Vertex. */ private Vertex getVertex( String vertexName ) { Vertex v = vertexMap.get( vertexName ); if( v == null ) { v = new Vertex( vertexName ); vertexMap.put( vertexName, v ); } return v; } /** * Recursive routine to print shortest path to dest * after running shortest path algorithm. The path * is known to exist. */ private void printPath( Vertex dest ) { if( dest.prev != null ) { printPath( dest.prev ); System.out.print( " to " ); } System.out.print( dest.name ); } /** * Initializes the vertex output info prior to running * any shortest path algorithm. */ private void clearAll( ) { for( Vertex v : vertexMap.values( ) ) v.reset( ); } /** * Single-source unweighted shortest-path algorithm. */ public void unweighted( String startName ) { clearAll( ); Vertex start = vertexMap.get( startName ); if( start == null ) throw new NoSuchElementException( "Start vertex not found" ); Queue<Vertex> q = new LinkedList<Vertex>( ); q.add( start ); start.dist = 0; while( !q.isEmpty( ) ) { Vertex v = q.remove( ); for( Edge e : v.adj ) { Vertex w = e.dest; if( w.dist == INFINITY ) { w.dist = v.dist + 1; w.prev = v; q.add( w ); } } } } /** * Single-source weighted shortest-path algorithm. */ public void dijkstra( String startName ) { PriorityQueue<Path> pq = new PriorityQueue<Path>( ); Vertex start = vertexMap.get( startName ); if( start == null ) throw new NoSuchElementException( "Start vertex not found" ); clearAll( ); pq.add( new Path( start, 0 ) ); start.dist = 0; int nodesSeen = 0; while( !pq.isEmpty( ) && nodesSeen < vertexMap.size( ) ) { Path vrec = pq.remove( ); Vertex v = vrec.dest; if( v.scratch != 0 ) // already processed v continue; v.scratch = 1; nodesSeen++; for( Edge e : v.adj ) { Vertex w = e.dest; double cvw = e.cost; if( cvw < 0 ) throw new GraphException( "Graph has negative edges" ); if( w.dist > v.dist + cvw ) { w.dist = v.dist +cvw; w.prev = v; pq.add( new Path( w, w.dist ) ); } } } } /** * Single-source weighted shortest-path algorithm using pairing heaps. */ public void dijkstra2( String startName ) { PairingHeap<Path> pq = new PairingHeap<Path>( ); Vertex start = vertexMap.get( startName ); if( start == null ) throw new NoSuchElementException( "Start vertex not found" ); clearAll( ); start.pos = pq.insert( new Path( start, 0 ) ); start.dist = 0; while ( !pq.isEmpty( ) ) { Path vrec = pq.deleteMin( ); Vertex v = vrec.dest; for( Edge e : v.adj ) { Vertex w = e.dest; double cvw = e.cost; if( cvw < 0 ) throw new GraphException( "Graph has negative edges" ); if( w.dist > v.dist + cvw ) { w.dist = v.dist + cvw; w.prev = v; Path newVal = new Path( w, w.dist ); if( w.pos == null ) w.pos = pq.insert( newVal ); else pq.decreaseKey( w.pos, newVal ); } } } } /** * Single-source negative-weighted shortest-path algorithm. */ public void negative( String startName ) { clearAll( ); Vertex start = vertexMap.get( startName ); if( start == null ) throw new NoSuchElementException( "Start vertex not found" ); Queue<Vertex> q = new LinkedList<Vertex>( ); q.add( start ); start.dist = 0; start.scratch++; while( !q.isEmpty( ) ) { Vertex v = q.remove( ); if( v.scratch++ > 2 * vertexMap.size( ) ) throw new GraphException( "Negative cycle detected" ); for( Edge e : v.adj ) { Vertex w = e.dest; double cvw = e.cost; if( w.dist > v.dist + cvw ) { w.dist = v.dist + cvw; w.prev = v; // Enqueue only if not already on the queue if( w.scratch++ % 2 == 0 ) q.add( w ); else w.scratch--; // undo the enqueue increment } } } } /** * Single-source negative-weighted acyclic-graph shortest-path algorithm. */ public void acyclic( String startName ) { Vertex start = vertexMap.get( startName ); if( start == null ) throw new NoSuchElementException( "Start vertex not found" ); clearAll( ); Queue<Vertex> q = new LinkedList<Vertex>( ); start.dist = 0; // Compute the indegrees Collection<Vertex> vertexSet = vertexMap.values( ); for( Vertex v : vertexSet ) for( Edge e : v.adj ) e.dest.scratch++; // Enqueue vertices of indegree zero for( Vertex v : vertexSet ) if( v.scratch == 0 ) q.add( v ); int iterations; for( iterations = 0; !q.isEmpty( ); iterations++ ) { Vertex v = q.remove( ); for( Edge e : v.adj ) { Vertex w = e.dest; double cvw = e.cost; if( --w.scratch == 0 ) q.add( w ); if( v.dist == INFINITY ) continue; if( w.dist > v.dist + cvw ) { w.dist = v.dist + cvw; w.prev = v; } } } if( iterations != vertexMap.size( ) ) throw new GraphException( "Graph has a cycle!" ); } /** * Process a request; return false if end of file. */ public static boolean processRequest( BufferedReader in, Graph g ) { String startName = null; String destName = null; String alg = null; try { System.out.print( "Enter start node:" ); if( ( startName = in.readLine( ) ) == null ) return false; System.out.print( "Enter destination node:" ); if( ( destName = in.readLine( ) ) == null ) return false; System.out.print( " Enter algorithm (u, d, n, a ): " ); if( ( alg = in.readLine( ) ) == null ) return false; if( alg.equals( "u" ) ) g.unweighted( startName ); else if( alg.equals( "d" ) ) { g.dijkstra( startName ); g.printPath( destName ); g.dijkstra2( startName ); } else if( alg.equals( "n" ) ) g.negative( startName ); else if( alg.equals( "a" ) ) g.acyclic( startName ); g.printPath( destName ); } catch( IOException e ) { System.err.println( e ); } catch( NoSuchElementException e ) { System.err.println( e ); } catch( GraphException e ) { System.err.println( e ); } return true; } /** * A main routine that: * 1. Reads a file containing edges (supplied as a command-line parameter); * 2. Forms the graph; * 3. Repeatedly prompts for two vertices and * runs the shortest path algorithm. * The data file is a sequence of lines of the format * source destination. */ public static void main( String [ ] args ) { Graph g = new Graph( ); try { FileReader fin = new FileReader( args[0] ); BufferedReader graphFile = new BufferedReader( fin ); // Read the edges and insert String line; while( ( line = graphFile.readLine( ) ) != null ) { StringTokenizer st = new StringTokenizer( line ); try { if( st.countTokens( ) != 3 ) { System.err.println( "Skipping ill-formatted line " + line ); continue; } String source = st.nextToken( ); String dest = st.nextToken( ); int cost = Integer.parseInt( st.nextToken( ) ); g.addEdge( source, dest, cost ); } catch( NumberFormatException e ) { System.err.println( "Skipping ill-formatted line " + line ); } } } catch( IOException e ) { System.err.println( e ); } System.out.println( "File read..." ); System.out.println( g.vertexMap.size( ) + " vertices" ); BufferedReader in = new BufferedReader( new InputStreamReader( System.in ) ); while( processRequest( in, g ) ) ; } }
0 komentar:
Posting Komentar